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ABSTRACT
The AMPK pathway is a metabolic stress-related and energy censor pathway which plays important regulatory roles in normal and malignant

cells. This cellular cascade controls generation of signals for initiation of mRNA translation via the mTOR pathway and exhibits regulatory

roles on the initiation of autophagy. AMPK activators have been shown to suppress mTOR activity and to negatively control malignant

transformation and cell proliferation of diverse malignant cell types. Such properties of AMPK inducers have generated substantial interest for

the use of AMPK targeting compounds as antineoplastic agents and have provoked extensive research efforts to better define and classify the

mechanisms controlling AMPK activity and its functional consequences in malignant cells. J. Cell. Biochem. 113: 404–409, 2012.
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T he AMP-activated protein kinase (AMPK) is composed of a

catalytic subunit (a subunit) and two regulatory subunits

(b and g subunits) [Davies et al., 1994; Mitchelhill et al., 1994;

Carling et al., 2011; Xiao et al., 2011]. In order for the kinase activity

of AMPK to be induced, phosphorylation of residue Thr172 located

in the a subunit of the complex is required [Hawley et al., 1996].

Such phosphorylation is mediated by the upstream LKB1 kinase in

response to changes in the AMP/ATP ratio [Hawley et al., 1996].

Increased levels of AMP result in binding of AMP to the g subunit of

AMPK, promoting a conformational change of the AMPK protein to

expose the Thr172 position as a substrate for LKB1 [Hawley et al.,

1996; Carling et al., 2011]. Phosphorylation of AMPK on that

site also occurs in response to Ca2þ changes, via engagement of

the calmodulin-dependent protein kinase kinase-beta (CAMKKb)

[Hawley et al., 2005]. In such Ca2þ-mediated activation of AMPK,

the Thr172 phosphorylation can occur in the absence of any

apparent changes in the AMP levels [Carling et al., 2008]. The

interaction between CAMKKb and AMPK occurs via the kinase

domains of these kinases and it is specific for CAMKKb, as previous

work failed to show interactions of CAMKKa with AMPK [Green

et al., 2011].

Engagement of AMPK results in downstream signals that

ultimately control processes important for regulation of metabolism,

including fatty acid oxidation and mRNA translation/protein

synthesis [Carling et al., 2008; Carling et al., 2011; Hardie 2011].

Previous studies have demonstrated that AMPK suppresses activa-

tion of the mTOR pathway via indirect inhibitory effects on the

mTORC1 complex, involving phosphorylation and activation of the

tuberous sclerosis complex 2 (TSC2), which in turn inhibits Rheb

[Inoki et al., 2002]. There is also evidence for direct modulation of

the mTOR complex, via AMPK-induced phosphorylation of Raptor,

a key component of the mTORC1 complex. AMPK regulates the

mTORC1 complex via phosphorylation of Raptor on Ser792 and

Ser722, followed by 14-3-3 binding to Raptor and mTORC1

inhibition [Gwinn et al., 2008].

AMPK physiologically inhibits mTOR to optimize homeostasis in

the context of decreased available energy sources to the cell [Carling

et al., 2011]. However, as mTOR complexes play key roles in

proliferation and survival of malignant cells [Bjornsti and

Houghton, 2004; Sabatini, 2006] there has been substantial interest

in AMPK activators as potential antineoplastic agents. The best

known AMPK activators are AICAR and metformin and both of

these agents have been used extensively in studies to define the

roles of AMPK signaling in various cellular processes. Upon

transport in the cell, 5-aminoimidazole-4-carboxamide ribonucle-

oside (AICAR) is converted to ZMP, ultimately resulting in

AMPK activation and fatty acid oxidation [Corton et al., 1995;

Merrill et al., 1997]. The mechanism of metformin-mediated AMPK

activation is still uncertain; however, one possible mechanism is the

inhibition of the mitochondrial complex I, thereby decreasing ATP

production leading to an indirect increase of the AMP/ATP ratio

[Owen et al., 2000]. A recent study suggested a novel mechanism by

which metformin activates AMPK involving inhibition of AMP

deaminase (AMPD), followed by inhibition of AMP breakdown and
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accumulation of AMP [Ouyang et al., 2011]. This study also

demonstrated that AMPD knockdown results in abrogation of

metformin stimulation of glucose transport, underscoring the

relevance of this deaminase in the generation of metformin

responses [Ouyang et al., 2011].

AMPK AS A THERAPEUTIC TARGET IN
MALIGNANCIES

AMPK has been implicated in the regulation of glucose homeostasis

[Mor and Unnikrishnan, 2011] and skeletal muscle metabolism

[Jorgensen et al., 2006]. However beyond such functions and

because of the critical regulatory roles of AMPK in cell metabolism,

this kinase is an important target for the development of therapeutic

approaches in type II diabetes and the metabolic syndrome [Rutter

and Leclerc, 2009; Viollet et al., 2009; Zhang et al., 2009] and, in

fact, metformin is one of the major drugs used in the treatment of

type II diabetes. However, as there has been emerging evidence that

many of the pathways deregulated in cancer affect cell metabolism

[Cairns et al., 2011], an increasing number of studies have focused

on the link between AMPK regulation and tumorigenesis. Below, we

discuss basic studies focusing on AMPK in different malignancies

and clinical-translational implications and efforts resulting from

such work [Fig. 1].

RENAL CELL CARCINOMA

There is substantial evidence for aberrant activation of the AKT/

mTOR pathway in renal cell carcinoma (RCC), while mTORC1

inhibitors have shown significant clinical activity in the treatment

of this malignancy [Hudes et al., 2007; Dancey, 2010]. Moreover,

increased phosphorylation of AKT and reduced PTEN expression

appears to correspond with lower survival rates in RCC [Hager et al.,

2009]. Such evidence has raised the possibility that modulation of

AMPK may provide an additional approach to target the mTOR

pathway in RCC cells. Consistent with this, a recent study

demonstrated that activation of AMPK by metformin or AICAR

in RCC lines correlates with suppression of mTOR effectors and

generation of antineoplastic responses [Woodard et al., 2010].

Interestingly, concomitant treatment with statins, which in previous

studies were shown to blockmTOR activation [Woodard et al., 2008],

enhanced the anti-RCC effects of metformin or AICAR suggesting

that such combinations may provide an approach to enhance

targeting of RCC cells [Woodard et al., 2010]. Another recent study

demonstrated that metformin induces G0/G1 cell cycle arrest and

suppresses renal carcinoma growth in a xenograft model in nude

mice [Liu et al., 2011]. Altogether these recent studies have

suggested that AMPK targeting may provide an effective approach

for the treatment of RCC, a concept further reinforced by the

emerging evidence that renal cancer is a metabolic disease, as shown

among other things by the fact that all known kidney cancer genes

are involved in pathways engaged in response to metabolic stress or

to nutrient stimulation [Linehan et al., 2010].

BREAST CANCER

There is evidence for dysregulation of the PI3K/AKT/mTOR pathway

in breast cancer, resulting in substantial interest on the therapeutic

potential of agents that target mTOR [O’Regan and Hawk, 2011]. As

AMPK activation results in mTOR suppression, this has raised the

potential of AMPK targeting for the treatment of breast cancer, while

the importance of exploring the anticancer effects of metformin has

been articulated [Hadad et al., 2008]. Notably, other studies have

shown that AMPK is dysfunctional in primary breast cancer and that

Fig. 1. Overview of signaling pathways and compounds regulating AMPK in malignancies.
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decreased AMPK signaling has an inverse relationship with

histological grade and axillary lymph node involvement, further

supporting the potential value of AMPK activators in therapeutic

approaches for breast cancer [Hadad et al., 2009]. In vitro studies

have shown that metformin activates AMPK in breast cancer cell

lines and suppresses activation of elements of the mTOR cascade and

inhibits malignant cell proliferation [Zakikhani et al., 2006]. In

addition, there is recent evidence that siRNA-mediated knockdown

of AMPK in breast cancer cells reverses the effects of metformin

[Zakikhani et al., 2006]. Other studies have demonstrated that this

agent induces cell cycle arrest of breast cancer cells independently of

p53 or HER2 mutations [Zhuang and Miskimins, 2008]. Such effects

appear to be mediated by reduction in cyclin D1 levels, in a p27Kip1

and p21Cip1-dependent manner [Zhuang and Miskimins, 2008].

Importantly, AMPK targeting appears to have suppressive effects on

breast cancer stem cells. Metformin has been shown to selectively

inhibit breast cancer stem cells [CD44high/CD24low], while it acts

synergistically with doxorubicin, which inhibits cancer cells but not

stem cells [CD44low/CD24high], resulting in decrease in the numbers

of both cell populations [Hirsch et al., 2009]. Other work has shown

inhibitory effects of metformin on cell proliferation of triple

negative (ER, PR, HER2/neu negative) breast cancer cells, associated

with diverse molecular responses [Liu et al., 2009].

Beyond laboratory studies, there has been evidence from

epidemiological studies suggesting that AMPK activation may be

effective in the treatment of breast cancer. For instance, diabetic

patients on metformin have a lower incidence of breast cancer

[Evans et al., 2005]. In addition, among diabetic patients with breast

cancer on neoadjuvant therapy, those receiving metformin were

found to have higher chance to achieve complete remissions (CR)

than those not receiving metformin [Jiralerspong et al., 2009].

A recent clinical trial [Hadad et al., 2011] examined the effects

of metformin on Ki67 and gene expression in non-diabetic

women with primary operable invasive breast cancer. This

study defined biological effects of metformin in vivo, demonstrating

that metformin decreased tumor proliferation assessed by Ki67

staining and suppressed expression of phosphodiesterase 3B, while

induction of several genes such as p53 and BRCA1 was also affected

[Hadad et al., 2011]. Thus, it appears that AMPK activation using

metformin may be of value in future efforts to devise new

approaches for the treatment of breast cancer. It will be also of

interest to examine in more detail the effects of other agents that

have been reported to activate AMPK in breast cancer cells in vitro,

such as the ginseng saponin metabolite compound K [Kim et al.,

2010], quercetin [Lee and Park, 2010] and resveratrol [Lin et al.,

2010].

MALIGNANT MELANOMA

There is evidence that malignant melanoma cells harboring the

B-RAF V600E mutation on the BRAF kinase which leads to over-

activation of the RAF/MEK/ERK signaling cascade have signifi-

cantly reduced AMPK activity [Zheng et al., 2009]. The mechanism

by which such suppression occurs appears to reflect enhanced

activation of the downstream effectors of B-RAF, ERK and p90RSK,

resulting in phosphorylation and inactivation of LKB1 [Zheng et al.,

2009]. Previous studies have demonstrated that inhibiting the AKT/

mTOR pathway enhances the pro-apoptotic effects of certain

chemotherapeutic agents in melanoma cells [Sinnberg et al., 2009].

Recent work has also shown that AICAR and metformin exhibit

antiproliferative effects on malignant melanoma cell lines and

suppress anchorage-independent growth [Woodard and Platanias,

2010]. In addition, the pro-apoptotic effects of these agents were

enhanced by concomitant statin-treatment [Woodard and Platanias,

2010]. Interestingly, another recent study demonstrated that

vincristine, exerts its cytotoxic effects on melanoma cells via

reactive oxygen species [ROS]-mediated activation of AMPK by

LKB1. The pro-apoptotic effects of vincristine were shown to depend

on AMPK activation and were further enhanced by combination

with AICAR, thereby inhibiting the mTOR pathway and activating

the p53 pathway, ultimately resulting in apoptotic cell death [Chen

et al., 2011]. Beyond in vitro effects, metformin has also been shown

to suppress melanoma growth in vivo in a B16 mouse melanoma

model [Janjetovic et al., 2011b].

LUNG CANCER

Inactivation of LKB1, one of the two main AMPK kinases has been

shown to cooperate with Kras mutations to promote lung

tumorigenesis [Ji et al., 2007]. Remarkably, homozygous inactiva-

tion of LKB1 was found to result in stronger cooperation with Kras

for transformation than loss of p53 or Ink4a/Arf [Ji et al., 2007].

Other studies demonstrated that AICAR reduces cell death of LKB1-

wild-type but not LKB1-mutant lung carcinoma cells under reduced

glucose conditions [Carretero et al., 2007]. Increasing AMPK activity

may provide an approach to prevent development and/or target lung

tumors as suggested by a study demonstrating that, by activating

AMPK and suppressing AKT, the chemo-preventative agent

deguelin inhibits translation of survivin and suppresses lung

tumorigenesis [Jin et al., 2007]. Treatment with metformin has also

been shown to prevent lung carcinogenesis in mice exposed to a

tobacco carcinogens [Memmott et al., 2010]. Interestingly, although

AMPK activation in that case was found in the liver but not lungs of

such mice, mTOR activity was suppressed in lung tissue, raising the

possibility that inhibition of lung tumorigenesis in this case might

reflect direct effects on mTOR, rather than AMPK induction

[Memmott et al., 2010]. AMPK is also activated by ionizing

radiation in an LKB1-independent manner, resulting in p21(waf/cip)

and cell cycle arrest [Sanli et al., 2010], while treatment of lung

cancer cells with lovastatin also results in AMPK induction, andmay

be a mechanism by which lovastatin sensitizes cells to ionizing

radiation [Sanli et al., 2011].

OVARIAN CANCER

The potential use of metformin as an anti-neoplastic agent in

ovarian cancer is supported by studies demonstrating in vitro

inhibitory effects [Gotlieb et al., 2008], as well as dose-dependent

antitumor effects in a mouse xenograft model for ovarian cancer

[Rattan et al., 2011a]. In that study, tumors from mice injected with

A2780 ovarian cells were treated with metformin, resulting in

50–60% reduced size as compared to tumors from untreated mice.

Such in vivo effects of metformin correlated with AMPK activation

and inhibition of protein biosynthesis as a result of suppression of

the mTOR pathway [Rattan et al., 2011a]. In addition, metformin
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resulted in a significant reduction of angiogenesis and metastasis,

while combination of metformin and cisplatin results in synergistic

cytototoxicity [Rattan et al., 2011a]. There is also evidence

that ovarian carcinoma cells are sensitive to glucose deprivation,

as a result of induction of AMPK activity, further suggesting

that AMPK activators may ultimately prove to be of value in

the treatment of ovarian cancer [Priebe et al., 2011]. Other

studies have provided evidence that metformin may generate

antiproliferative effects on ovarian cells via both AMPK-dependent

and AMPK-independent mechanisms [Rattan et al., 2011b].

Altogether, these studies suggest that engagement of AMPK may

provide a novel clinical-translational approach in the treatment of

ovarian cancer. However, there should be also some caution, as one

study demonstrated that AMPK activation by lipophospatidic acid

(LPA) promotes tumor metastasis in ovarian cancer [Kim et al.,

2011].

OTHER SOLID TUMORS

Engagement of AMPK and/or known activators such as AICAR or

metformin have been shown to generate inhibitory responses in

several different types of solid tumor cells. These include models

using pancreatic cancer cells [Kisfalvi et al., 2009], thyroid cancer

cells harboring the BRAF-V600E mutation [Choi et al., 2011],

and glioblastoma cells [Guo et al., 2009]. There is also evidence

that the AMPK activator phenformin suppresses the growth of

colon cancer cells [Lea et al., 2011], while induction of apoptosis of

colon cancer cells by 20(S)-ginsenoside Rg3 [20(S)-Rg3)] is

reversible by the AMPK inhibitor compound C or by siRNA

targeting AMPK, indicating a key role for AMPK in the process

[Yuan et al., 2010].

HEMATOLOGICAL MALIGNANCIES

Studies in which various childhood acute lymphoblastic leukemia

(ALL) cell lines were treated with the AMPK activator AICAR

have shown that this agent induces cell cycle arrest and apoptotic

cell death in ALL cells [Sengupta et al., 2007]. In addition,

combination of AICAR with the mTOR inhibitor rapamycin

further enhanced suppression of cell proliferation [Sengupta

et al., 2007]. AMPK also appears to be an attractive target in

mantle cell lymphoma [MCL] cells. Studies using an MDM2

inhibitor, nutlin-3A, demonstrated that the resulting p53

activation down regulates the AKT/mTOR cascade via an AMPK-

dependent mechanism, leading to G1-S cell cycle arrest and

apoptosis of MCL cells [Drakos et al., 2009]. More recently,

metformin was shown to have potent inhibitory effects on various

acute myeloid leukemia [AML] cell lines, primary AML cells, as well

as AML xenografts in nude mice, associated with decreased mTOR

signaling [Green et al., 2010]. These studies have raised the potential

of targeting the LKB1/AMPK pathway for the treatment of AML

[Green et al., 2010]. There is also evidence that AMPK activation

suppresses the growth of multiple myeloma cells [Baumann et al.,

2007], suggesting that multiple myeloma may be another

malignancy worth exploring potential therapeutic approaches to

target AMPK.

FUTURE PROSPECTS FOR AMPK TARGETING IN
MALIGNANCIES

The AMPK pathway has gained increasing interest in the cancer

research field over the last decade. AMPK is an appealing target as a

therapeutic for a variety of tumors, mainly because of its inhibitory

effect on one of the most important metabolic pathways, the PI3K/

AKT/mTOR signaling pathway. The effects of AMPK activators in the

reduction of tumorigenesis have been established in many systems.

In particular, the AMPK activator, metformin, has been the subject

of many recent studies in various tumor models, starting from

efforts to establish its inhibitory effects on cell lines and animal

models, ultimately leading to human clinical trials. A potential

drawback in studies using metformin and AICAR is that beyond

effects on AMPK, some of their antitumor properties may reflect

modulation of other pathways, in a cell-type specific manner

[Robert et al., 2009; Kalender et al., 2010; Santidrian et al., 2010;

Janjetovic et al., 2011a]. Although inmost cases this does not appear

to be the case and AMPK induction results in potent antitumor

effects, this emphasizes the need for designing and developing more

potent and selective AMPK activators. A new compound, A-769662,

identified from a large chemical screen, might also be an attractive,

more direct method of targeting AMPK, as it is has a significantly

lower EC50 than either AICAR or metformin and has been illustrated

to induce AMPK activation at concentrations lower than AMP [Cool

et al., 2006]. Studies using A-769662 and other similar compounds

that may emerge are warranted and may provide powerful new tools

in the future treatment of malignancies.
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